Tyrosine decarboxylase activity of enterococci grown in media with different nutritional potential: tyramine and 2-phenylethylamine accumulation and tyrDC gene expression

نویسندگان

  • Eleonora Bargossi
  • Giulia Tabanelli
  • Chiara Montanari
  • Rosalba Lanciotti
  • Veronica Gatto
  • Fausto Gardini
  • Sandra Torriani
چکیده

The ability to accumulate tyramine and 2-phenylethylamine by two strains of Enterococcus faecalis and two strains Enterococcus faecium was evaluated in two cultural media added or not with tyrosine. All the enterococcal strains possessed a tyrosine decarboxylase (tyrDC) which determined tyramine accumulation in all the conditions tested, independently on the addition of high concentration of free tyrosine. Enterococci differed in rate and level of biogenic amines accumulation. E. faecalis EF37 and E. faecium FC12 produced tyramine in high amount since the exponential growth phase, while 2-phenylethylamine was accumulated when tyrosine was depleted. E. faecium FC12 and E. faecalis ATCC 29212 showed a slower tyraminogenic activity which took place mainly in the stationary phase up to 72 h of incubation. Moreover, E. faecalis ATCC 29212 produced 2-phenylethylamine only in the media without tyrosine added. In BHI added or not with tyrosine the tyrDC gene expression level differed considerably depending on the strains and the growth phase. In particular, the tyrDC gene expression was high during the exponential phase in rich medium for all the strains and subsequently decreased except for E. faecium FC12. Even if tyrDC presence is common among enterococci, this study underlines the extremely variable decarboxylating potential of strains belonging to the same species, suggesting strain-dependent implications in food safety.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tyrosine decarboxylase activity of Enterococcus mundtii: new insights into phenotypic and genetic aspects

Few information is available about the tyraminogenic potential of the species Enterococcus mundtii. In this study, two plant-derived strains of E. mundtii were selected and investigated to better understand the phenotypic behaviour and the genetic mechanisms involved in tyramine accumulation. Both the strains accumulated tyramine from the beginning of exponential phase of growth, independently ...

متن کامل

The Capability of Tyramine Production and Correlation between Phenotypic and Genetic Characteristics of Enterococcus faecium and Enterococcus faecalis Strains

The aim of this study was to investigate the diversity of tyramine production capability of four Enterococcus strains in buffered systems in relation to their genetic characteristics and environmental conditions. Cells of the strains Enterococcus faecalis EF37 and ATCC 29212, and E. faecium FC12 and FC643 were re-suspended in phosphate/citrate buffers with different pH, NaCl concentration and i...

متن کامل

Tyramine and phenylethylamine biosynthesis by food bacteria.

Tyramine poisoning is caused by the ingestion of food containing high levels of tyramine, a biogenic amine. Any foods containing free tyrosine are subject to tyramine formation if poor sanitation and low quality foods are used or if the food is subject to temperature abuse or extended storage time. Tyramine is generated by decarboxylation of the tyrosine through tyrosine decarboxylase (TDC) enz...

متن کامل

Biogenic amine production by Gram-positive bacteria isolated from Spanish dry-cured "chorizo" sausage treated with high pressure and kept in chilled storage.

We studied the production of biogenic amines by 200 strains of lactic acid bacteria and staphylococci isolated during chilled storage from samples of Spanish dry-cured "chorizo" sausage treated with high-pressure. The presence of biogenic amines in a decarboxylase synthetic broth was confirmed by ion-exchange chromatography. β-phenylethylamine was the biogenic amine more frequently produced (22...

متن کامل

Beta-1,3-glucooligosaccharide induced activation of four enzymes responsible for N-p-coumaroyloctopamine biosynthesis in potato (Solanum tuberosum cv.) tuber tissue.

Potato tuber disks, when treated with laminarin, a beta-1,3-glucooligosaccharide from Laminaria digitata, accumulate a hydroxycinnamoyl amide compound, N-p-coumaroyloctopamine (p-CO). The biosynthesis of p-CO was investigated by feeding experiments, in order to show that the precursors of N-p-coumaroyl and octopamine moieties of p-CO are L-phenylalanine and L-tyrosine, respectively. The treatme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015